
PsychoPy: a crash course
Florent Perek – Tutorial at ICCG-10, Paris, 19 July 2018

In this session, we will learn to use PsychoPy, a software package that can be used to
design computerized experiments. PsychoPy is free and multi-platform (available on
Windows, Mac and Linux). It is easy to use through a graphical interface. To follow
this tutorial you will first need to download the latest version of PsychoPy from
http://www.psychopy.org/ and install it on your machine.

PsychoPy is primarily a Python library, i.e., a set of routines written in Python to
serve as building blocks for designing experiments. Hence, an experiment created in
PsychoPy is in fact a Python script using the PsychoPy library to control screen
display, computer inputs, file outputs, etc. The graphical interface, PsychoPy Builder,
is merely a frontend to the functions of the Python library: from a WYSIWYG,
“point-and-click” representation of the experiment (saved as a .psyexp file), it
generates a Python script that can be executed by the interpreter.

1. A first example: the stroop experiment

Launch PsychoPy. Go to the “Demos” menu and select “stroop”. Click on “Run”
(also in the “Tools” menu) to see what the experiment does:

1. Flow: this shows the general structure of the experiment. A PsychoPy
experiment consists of a succession of routines, each corresponding to a

1

2

3
4

different screen. Routines can be within a loop, which causes them to be
repeated. Routines can be opened by clicking on them.

2. Routine panel: this shows the internal structure of a routine. Routines consist
of components, listed on the left, which specified what should be displayed
and the different kinds of responses that can be provided by participants. The
blue bars represent the temporal extent of each component.

3. Routine tabs: list all the routines currently opened and allow to switch
between them.

4. Components toolbox: shows components that can be added to the current
routine. Stimuli components specify what is displayed on the screen.
Responses components record participants’ feedback using a range of input
devices (keyboard, mouse, microphone, button box, etc.).

Take some time to poke around and look at the routines and their components. What
is the function of each routine? What does each component do within its routine?

NB: You can quit an experiment at any time by pressing the Esc key.

2. Basic features

Properties of components

By clicking on a component, you can display a form listing its properties and allowing
you to change them. For instance, you can edit the text shown by a Text component.
You can also change various aspects of the behavior of components.

Start/stop

All components have a “Start” and a “Stop” property. This controls when the
component is active. If the “Stop” property is left blank, the component stays active
until the end of the routine.

Ending a routine

There are two ways to end a routine. First, a routine automatically ends when all of its
components have become inactive, i.e., their “Stop” property has been reached
(timeout). Second, a response component can force a routine to end if its property
“Force end of Routine” is checked. In that case, the routine ends once an appropriate
response has been received. Either way, when a routine ends, the next routine in the
flow is executed.

Loops

Placing loops causes one or more routine(s) to be repeated a certain number of times.
A specific number can be entered in the field “nReps”, but it is more typical (and
useful) to control a loop with a Conditions file. In that case, the loop will iterate over
the rows of the file (and if the value of nReps if greater than 1, this will be repeated
that many times). Conditions files must be tabulated data in XLSX (Microsoft Excel)
or CSV (comma-separated values) format; the first row of the table must contain the
column names. Interestingly, the data in each row will be available as variables (using
the names in the first row), most importantly to populate the routines (see below).

Component property values and variables

Most properties of the components have a special setting, located to the right, that
controls how the value of the property is set. There are three possible settings:

• Constant: the value is set for the whole experiment.
• Set every repeat: this setting only makes sense if the routine is within a loop.

In that case, the value will be set at every iteration of the loop. This is used in
particular in order to update the components according to the content of the
Conditions file.

• Set every frame: the value is constantly updated. This is useful if the property
refers to some variable and should be updated as soon as the variable changes.

If the value of the property starts with a dollar sign ($), it is interpreted as a variable
name. Variables contain information that might change during the experiment. A
common example of variables in PsychoPy are the columns of a Conditions file: at
every iteration of a loop, a new row is read off the Conditions file and the data is

placed in a set of variables, using the column names. Note that these variables are
only accessible from within the loop.

Examine how this feature is used in the stroop experiment demo. Look in particular at
the properties of the “word” component in the “trial” routine.

NB: constant character strings and variables can be combined using the following
syntax: ‘This is a %s.’ %($name). Any number of variables can be added in %(…).
Each variable is matched to a %s symbol in the string, in order of occurrence.

Recording responses

Every time the experiment is run, a different set of output files is created to record
responses. The output files are stored in a “data” folder in the same location as the
experiment (i.e., the .psyexp file; in the case of the stroop demo, it should be located
in a “demos” folder within your home folder). The name of the output files is
generated automatically from the name of the experiment, the participant ID, and the
date and time of execution. By default, there are three files: a .psydat file, a .log file,
and a .csv file. The latter is the most useful for data analysis, as it contains the data for
each trial in tabular form.

All response components added to an experiment automatically add data to the output
file. The nature of the data depends on the type of component: character or text for the
Keyboard component, position of the mouse pointer on the screen (x, y) for the
Mouse component, name of the recorded sound file for the Microphone component,
etc. In addition, the reaction time is always stored for all types of response
components.

Experiment settings

By clicking on this icon , you can change
various properties of the experiment.

Notably, you can specify experiment
information: variables that are collected every
time the experiment is run. This is a convenient
way to collect information about the session and
the participant (ID number, age, sex, etc.).
Experiment information is automatically
recorded in the output file.

3. Another example: lexical decision task

Now we will create an experiment in PsychoPy from the grounds up. Namely, we will
implement a lexical decision experiment of the kind described in the last session. As a
reminder, such an experiment consists in participants deciding, in each trial, if a given
string of characters is a word or not.

The starting point is to create a stimulus file; here, it is ready for you:

This dataset was adapted from the lexical decision dataset (“lexdec”) provided by
Harald Baayen in the “languageR” package for R. The column “string” contain the
string of characters to display (word or non-word), and “type” specifies whether it is a
word or a non-word. The other two columns, “length” and “logFrequency”, contain
the length of the word and non-words in characters, and the log-transformed
frequency of the word (from the CELEX database). These two variables are
independent variables, but they will not be used in PsychoPy. It is nevertheless good
practice to include them in the stimulus file: they will be carried over to the results
file, which will be convenient for data analysis.

The lexical decision task experiment should consist of the following:

• A welcome routine.
• An instructions routine.
• A fixation routine which displays a fixation mark (e.g., ‘+’) in the middle of

the screen for 1 sec.
• A trial routine, with the lexical decision task proper. Participants will have to

use the right arrow of the keyboard if they classify the string as a word, and
the left arrow if they classify it as a non-word.

• Both fixation and trial are within a loop.
• A “thank you” routine, ending after three seconds.

Bonus question

Once you have created the regular lexical decision task, you can try to modify it (and
the stimuli file) into the following two variants:

• One in which words and non-words would be presented in blocks of two (in a
way that is not noticeable to participants); in some of these blocks the two
words would be semantically related. This variant could be used to test if the
first word primes the second one.

• One in which two words, or two non-words, or a word and a non-word, are
presented on the screen at the same time, and participants have to decide if
both strings are words or not.

These variants could be used to investigate lexical decisions involving, for instance,
semantically related words (e.g., synonyms, co-hyponyms, meronyms, etc.) or words
involved in collocations.

4. Advanced features

The Code component

As mentioned earlier, PsychoPy experiments are actually Python scripts. When you
run an experiment from PsychoPy Builder, it is first translated into Python code
which is then executed. You can see this code in the Coder interface by running the
“Compile” command in the “Tools” menu (or pressing F5).

This architecture makes PsychoPy very flexible and powerful: features that are not
covered by the components’ regular behavior can be programmed by inserting Python
code. This is done via the Code component. Code components can be inserted
anywhere, but the destination of the code itself in the experiment script depends on
which field(s) is used:

• Begin experiment: the code is run before any routine is called.
• Begin routine: the code is run at the beginning of the routine where the Code

component is placed.
• Each frame: the code is run constantly, every time the screen is refreshed

(typically 60 frames per sec for LCD). This is useful for event-based
programming, i.e., to trigger some code once particular conditions are met.

• End routine: at the end of the current routine.
• End experiment: at the very end of the experiment.

Code components are a powerful tool, but they do require some programming skills
and knowledge of Python syntax. They are several ways of figuring out how to write
code to customize PsychoPy’s behavior: (i) look at and study the code generated by
Builder in the Coder interface (this is how you can find existing variables and their
name, for instance), (ii) read the Coder documentation at
http://www.psychopy.org/coder/coder.html, (iii) look for code examples on search

engines, on PsychoPy’s forum (https://discourse.psychopy.org/), and on the
psychopy-users Google group.

In the case of our lexical decision experiment, Code components could be used to add
the following features:

• Add a feedback screen after each trial, which checks the keyboard input
against the position of the word, and tells the participant whether it was the
correct answer (see the “sternberg” demo for an example of this).

• In the second variant, randomize the position of the two strings at runtime for
each trial.

Other Stimuli and Responses components

• Image (stimuli): displays pictures (jpeg, png, etc.). The access path can be
defined relative to the experiment’s location.

• Sound and Video (stimuli): plays sound and video files.
• Mouse (responses): records input information from the computer mouse. By

default, mouse press can only end a routine, but with some code, more
complex behavior can be implemented.

• Rating scale (responses): a Likert-style scale with adjustable length, which can
also be used to submit a categorical response instead of a numerical rating.
Responses can be submitted with the mouse or the keyboard.

• Microphone (responses): records sound from the computer microphone, which
allows participants to provide spoken responses. Recorded sound files are
saved in a separate subfolder of the “data” folder for every run. One sound file
is recorded for every execution of the component, in .wav format by default.

PsychoPy also supports Cedrus and ioLabs button box with bespoke Responses
components. These devices allows to record reaction times with millisecond
precision. Note that USB keyboards typically have a response latency of 20-30 msec,
making them unsuitable to detect differences in reaction time of that order of
magnitude. Built-in keyboards (e.g., on a laptop) might have better precision. See
http://www.psychopy.org/general/timing/millisecondPrecision.html for more details.

